2022年9月1日 星期四 责编/郭寿权 美编/杰清 校对/凌美

编前:"效法羲和

取天马,志在长空牧群星",我国 首颗太阳探测科学技术试验卫星"羲 和号"于2021年10月14日发射升空,运 行于平均高度为517公里的太阳同步轨 道。作为首位太阳专属"摄影师","羲和号" 的发射,意味着我国实现太阳空间探测"零的 突破"。8月30日,"羲和号"首批成果发布 会在北京举行。从"羲和号"上"看"太阳, 观测到了什么?这些科学探测成果, 对于人类认识太阳有哪些新贡

给太阳低层大气做"CT" 在国际上是首次

高分专项总设计师兼副总指挥、国防科工局重大专项工程中心主任赵坚介绍,近一年来,国家航天局组织航天科技集团、南京大学等工程任务团队,开展卫星平台超高指向精度、超高稳定度技术试验300余次,圆满完成了"羲和号"在轨测试和试验工作,取得了重要科研成果,包含5项国际首次成果。

"我们在国际上首次实现了在空间对太阳 Hα 波段的光谱扫描成像,记录了太阳活动在光球层和色球层的响应过程。"赵坚告诉记者,通过一次扫描,"羲和号"可获取376个波长位置的太阳图像,不同波长对应了光球和色球不同层次的太阳大气。

赵坚说,对于太阳物理研究而言,Hα 谱线十分重要。"因为它是太阳活动在太阳低层大气中响应最强的谱线。对这条谱线开展探测,就可以同时获得光球层和色球层的活动信息,大大提高我们对太阳爆发物理机制的认知。"

据悉,"羲和号"此次利 用 Hα 成像光谱仪的分辨率 比地面滤光器提高了约 10 倍,达到国际先进水平。

"羲和号"卫星首席科学家、南京大学教授丁明德表示,"羲和号"在国际上首次在轨获取了太阳 Hα谱线、Si I 和 Fe I 谱线,得到了完整的谱线轮廓,这些数据有助于科学家计算出太阳大气的温度、密度、速度,更加深入地研究太阳大气结构,了解太阳爆发活动的触发原因和传播过程,从而更好地开展空间天气预报,保障人类生命安全。

丁明德介绍,"羲和号" 卫星科学数据已向全球开放 共享,可通过南京大学太阳 科学数据中心查询和下载, 目前已得到美、法、德等国太 阳物理研究学者的广泛应 用。

太空"磁悬浮" 让拍照又准又稳

作为一名"摄影师",相 机既要对得准,又要拍得 稳。"羲和号"在国际上首次 采用基于"动静隔离、主从 协同"理念的非接触式磁浮 卫星平台,就像装上了"云 台"。

航天科技集团八院"羲 和号"卫星系统总指挥陈建 新介绍,传统卫星均采用平 台舱和载荷舱固定连接的 设计方法,平台舱飞轮、陀 螺等活动部件的振动,将不 可避免地传递至载荷舱,影 响相机观测质量。"羲和号" 采用"动静隔离非接触"的 总体设计新方法,将平台舱 与载荷舱物理隔离,有效隔 绝了卫星平台的干扰,通过 大带宽、超高精度的磁浮作 动器,实现了相机指向精度 和稳定度指标较传统卫星 提升一至两个数量级。

同时,为实现平台舱对载荷舱的能源供给以及两舱之间的信息传输,"羲和号"还在轨验证了舱间无线能源传输、激光通信、无线超信等多项卫星平台新技术。未来,新型平台还将应用于空间天文探测、高分辨率对地详查等新一代航天任务中,有效完成高精度观测。

观测太阳爆发活动 数据全球共享

> 目前,"羲和号"每天都 在按照既定计划开展科学 观测,已经观测到了近百个 太阳爆发活动,相关研究工 作正在开展。

赵坚介绍,我国在太阳观测领域发表论文数量已居世界第二位,但之前使用的数据均来自国外卫星数据。"羲和号"发射成功后,国家航天局牵头成立了卫星数据政策,供国内外科学系研究、使用、共享卫星的原型、使科学成果,为争产生更多的原型性科学成果,为人类科学事业做出中国贡献。目前,"羲和号"的科学数据已向全球开放共享。

赵坚表示,太阳活动周期约11年,当前正处于第二十五个太阳活动周期,全世界又进入太阳研究新的高峰期。我国作为航天大国,及时开展太阳探测活动十分必要。

据介绍,今年我国还将 发射先进天基太阳天文台 卫星,以"一磁两暴"为科学 目标,对太阳耀斑、日冕物 质抛射和全日面矢量磁场 开展观测,为预报严重影响 人类正常生活的空间灾害 性天气提供支持。

此外,我国正在论证后 续太阳探测发展计划,科学 家们希望按照在黄道面内 多视角探测、大倾角太阳极 区探测和太阳抵近观测"三 步走"实施,由易到难,逐步 深入,进一步了解太阳的构 造,确定太阳活动的三维结 构,掌握机理和活动规律, 为人类科学事业的发展贡献中国力量。 自上世纪60年代以来,世界各国已经先后发射了70多颗太阳探测卫星。例如,1990年发射、首次实现太阳极轨探测的"尤利动斯"号探测器;2018年发射、首次对太阳进行最近探测的"帕克"探测器;2020年极见等,计划首次获取太阳极风等离子体、高能粒子的"太阳轨道飞行器"等。

人类为何

对太阳如此着迷

人类为何对太阳如此 着迷?

太阳也是宇宙中与人 类关系最密切、对人类社会 生活影响最大的一颗恒 星。俗话说,万物生长靠太 阳。太阳在地球演化和人 类文明发展过程中发挥着 不可替代的作用。作为距 离我们最近的恒星,太阳在 超过45亿年的时间里,孕育 了地球上的天气、气候以及 我们所依赖的生态环境。 它的能量来源于自身时刻 发生的氢、氦核聚变。大众 熟知的光合作用,就离不开 太阳的光能。太阳对人类 的影响特别表现在时有发 生的耀斑和日冕物质抛射 现象上。耀斑是太阳局部 突然增亮的爆发活动。 个中等强度的耀斑,可发射 出从伽马射线到无线电波 段的强大辐射,总能量相当 于10亿~100亿个原子弹爆 炸。日冕物质抛射则是太 阳上大规模物质爆发的现 象.一次爆发能把1亿~10亿 吨物质抛射到行星际空间。 这两种现象是空间灾害性天 气的源头,影响空间飞行器 安全甚至地球上的人类生 活。因此,对太阳的观测研 究同时具有重要科学意义和

实际应用价值。

▶ ● 新华社 科技日报人民日报 北京日报