第A04版:新知 上一版 下一版  

原创性突破!实验室里“种”淀粉

我国科学家首次实现了二氧化碳到淀粉的全合成,系国际首次

中国科学院天津工业生物技术研究所蔡韬副研究员在实验室展示人工合成淀粉样品

马延和(中)的科研团队成员

科研人员展示人工合成淀粉样品

淀粉是目前玉米等粮食的主要成分(本版图片来源新华网)

N新华 人民 央视 科技日报 中国科学报

关注理由:

粮食不需要土地种植,可以在生产车间中制造出来。如今,这个看似天方夜谭的想象正在成为可能。

9月23日,中国科学院召开本年度首场新闻发布会,介绍该院天津工业生物技术研究所在人工合成淀粉方面取得的重要进展。该所研究人员提出了一种颠覆性的淀粉制备方法,不依赖植物光合作用,以二氧化碳、电解产生的氢气为原料,成功生产出淀粉,在国际上首次实现了二氧化碳到淀粉的从头合成,使淀粉生产从传统农业种植模式向工业车间生产模式转变成为可能,取得原创性突破。相关研究成果9月24日在线发表于《科学》杂志。

“这也意味着,我们所需要的淀粉,今后可以将二氧化碳作为原料,通过类似酿造啤酒的过程,在生产车间中制造出来。”天津工业生物所所长马延和说。

将二氧化碳还原生成甲醇,再转化为淀粉

淀粉是“粥饭”中最主要的碳水化合物,是面粉、大米、玉米等粮食的主要成分,也是重要的工业原料。目前,淀粉主要是农作物通过光合作用,由太阳光能、二氧化碳和水转化而成。这涉及60余步的代谢反应和复杂的生理调控,太阳能的理论利用效率不超过2%。农作物的种植通常需要数月的周期,使用大量的土地、淡水、肥料等资源。

长期以来,科研人员一直在努力改进光合作用这一生命过程,希望提高二氧化碳和光能的利用效率,最终提升淀粉的生产效率。

这次,天津工业生物所的科研人员就成功创制了一条利用二氧化碳和电解产生的氢气合成淀粉的人工路线。这条路线涉及11步核心生化反应,淀粉合成速率是玉米淀粉合成速率的8.5倍。

从能量角度看,光合作用的本质是将太阳光能转化为淀粉中储存的化学能。因此,将光能高效地转变为化学能并储存下来成

为关键。

“我们想到了光能—电能—化学能的能量转变方式。”天津工业生物所副所长王钦宏说:“首先,光伏发电将光能转变为电能,通过光伏电水解产生氢气,然后,通过催化剂利用氢气将二氧化碳还原生成甲醇,将电能转化为甲醇中储存的化学能。这个过程的能量转化效率超过10%,远超光合作用的能量利用效率。”

自然界中并不存在甲醇合成淀粉的生命过程。王钦宏说:“要想人工实现

这个过程,关键是要制造出自然界中原本不存在的酶催化剂。”

科研人员挖掘和改造了来自动物、植物、微生物等31个不同物种的62个生物酶催化剂,最终优中选优,使用10个酶逐步将甲醇转化为淀粉。这种路径不仅能合成易消化的支链淀粉,还能合成消化慢、升糖慢的直链淀粉。

“也许在不久的将来,不需要种地,也能够满足我们对碳水化合物的需要。”王钦宏说。

在人工合成途径构建上实现跨越式突破

不依赖植物光合作用、人工合成碳水化合物,一直是世界各国科学家的梦想。此前,华人科学家杨培东曾带领团队利用聚糖反应成功将二氧化碳转化为多种单糖混合物。

“但是,他们还尚未实现复杂碳水化合物的人工定向合成。”天津工业生物所副研究员蔡韬说,“也就是说,他们的路线方法合成的是多种简单糖类化合物的混合物,还很难定向到其中的一种。”

专家介绍,淀粉高效人工合成的挑战主要来自低密度太阳能到高密度电能和氢能,低浓度二氧化碳到

高浓度二氧化碳,以及复杂合成途径到简单合成途径3个方面。此前,在众多科研人员的努力下,前两个问题已基本得到了解决。

“这次,我们主要在人工合成途径构建方面实现了跨越式突破。”马延和说。

他介绍,一是跨越了人工途径进化的鸿沟。克服了不同来源、不同遗传背景的生物酶之间热力学与动力学不匹配等瓶颈,二氧化碳到淀粉的碳转化速率和效率显著提升。二是跨越了从虚拟到现实的鸿沟。团队用计算机可以设计出很多条合成途径,通过各种模块的组装和适配,最终筛

选出了符合条件的路径,实现了人工淀粉合成。

“经过分析鉴定,我们合成的淀粉样品无论是成分还是理化性质,都和自然生产的淀粉一模一样。”蔡韬说。

据科研团队介绍,在充足能量供给的条件下,按照目前的技术参数推算,理论上1立方米大小的生物反应器年产淀粉量相当于我国5亩土地玉米种植的平均年产量。

马延和说:“这一成果使淀粉生产的传统农业种植模式向工业车间生产模式转变成为可能,并为二氧化碳原料合成复杂分子开辟了新的技术路线。”

尚处于实验室阶段将攻关工业化路线

专家预计,如果未来该系统过程成本能够降低到可与农业种植相比的经济可行性,将可能会节约90%以上的耕地和淡水资源,避免农药、化肥等对环境的负面影响,提高人类粮食安全水平,促进碳中和的生物经济发展。

中国科学院副院长、党组成员,中国科学院院士周琪在发布会上强调,这项成果尚处于实验室阶段,离实际应用还有相当长的距离,后续还需要尽快实现从“0到1”的概念突破到“1到10”和“10到100”的转换,最终真正成为解决人类发展面临重大问题和需求的有

效手段和工具。

马延和介绍,科研人员正在针对工业化的问题进行攻关,比如解决酶的稳定性、活力、成本等问题,探索多条技术路线等,“预计未来5到10年能够建立起工业化示范装置”。

此外,该成果也得到了国内外领域专家的高度评价。《科学》杂志新闻部执行主任梅根·菲兰认为,该研究成果将为我们未来通过工业生物制造生产淀粉这种全球性重要物质提供新的技术路线;中科院院士赵国屏表示,这是一项具有“顶天立地”重大意义的科研成果;德国科学院院士、欧洲科学院院士曼弗雷德·雷兹称,本项工作将该领域的研究向前推进了一大步,同时将天津工业生物技术研究所推向了国际顶尖水平。

□趣知识

人工合成淀粉是什么味道?

“如果把人工合成淀粉做成面条、粉丝,大概会像意大利面那样劲道。”马延和表示,自然淀粉是直链淀粉和支链淀粉混在一起,目前实验室里合成的主要是直链淀粉,合成的支链淀粉没有自然淀粉中的支链淀粉那么复杂。

“在外观上,人工合成淀粉跟从玉米、薯类等农作物中提纯出来的淀粉看起来是一样的。”蔡韬说,实验室里通过人工合成产生的淀粉处于溶解状态,“是比较稀的淀粉糊糊,干燥后会变成粉状”。

科研人员对淀粉的基本判断方法是在溶液中加碘液,直链淀粉遇碘呈蓝色,支链淀粉遇碘呈紫红色。此外,他们还专门对合成物进行了理化分析。“通过核磁共振等检测,它和自然生产的淀粉一模一样。”蔡韬说。

版权所有 ©2020 福建日报 fjdaily.com 闽ICP备15008128号
中国互联网举报中心